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403MACA                           Complex Analysis          units      8 

                                                                                     Theoretical  4hr/week  

                                                                                                    Tutorial      4hr/week 
                                                      Practical     - hr/week 

 

1- Complex Numbers  

           complex number definition, properties  Geometric 

representation, Root of complex number,  field of complex number as 

metric field . 

                                                                                                   (12hrs) 

2-Regions in The Complex  Plane   

         Open set, Close set in a complex plan, connectedness, Region, 

smooth Carve. 

                                                                                                   (4hrs) 

3-Analytic Function    

           Function of a complex Variable, Limits, Continuity, 

Derivatives, Cauchy- Riemann Equations, Analytic Function, 

Harmonic Functions. 

                                                                                                   (16hrs) 

4- Elementary Functions  

           Exponential Function, Trigonometric Function, Logarithmic 

Function, Hyperbolic Functions.  

                                                                                                                   (8hrs) 

5-Serise  
          Convergence of Sequence, Convergence of Series, Pour Series, 

Convergence Pour Series, Taylor Series, Laure Series. 

                                                                                                  (12 hrs) 

6-Integrals  

        Definition Integrals of Function, Contour Integrals , 

Cauchy_Goursat Theorem, Cauchy_Integral Formula, Liouville's 

Theorem and the Fundamental Theorem of Algebra.   

                                                                                                 (16hrs) 



 

7-Residues and Poles 

       Residues, Cauchy's Residue Theorem, Using a Single Residue, 

Singular Points, Zeros of Analytic Functions. 

                                                                                              (12hrs) 

8-Applications of Residues  

        Evaluation of Improper Integrals, Jordan's Lemma, Definit 

Integrals involving Sines and Cosines, Argument Principle , Rouch's 

Theorem. 

                                                                                               (12hrs) 

 

 

 

   

 

 

 

 

                                                                                                 

 

 

 

 

 

 

 

 

 

 



( Taylor series) 

Definition:-( Taylor series ) 

   Taylor  series is a representation of a function as an infinite sum of 

terms that  are  calculated from the values of the function’s derivatives at 

a single  

point .  

Theorem:-  ( Taylor series )  

   Suppose  that a function  F is analytic throughout  a disk │𝑧– 𝑧0│ <

𝑅0,centered at 𝑧0  and with radius 𝑅0 ,then 𝑓(𝑧) has the 

power series representation   

       𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)ⁿ 

∞

𝑛=0

  │𝑧 – 𝑧0│ < 𝑅0 .    .   . (1,1)       

Where 𝑎𝑛  =
𝑓ⁿ(𝑧0)

𝑛!
     … (𝑛 = 0,1,2, … . . ) 

That is series (1,1) converges to 𝑓(𝑧) when 𝑧 lies in the open disk,  

Series (1,1) can of course  be  written : 

𝑓(𝑧) = 𝑓(𝑧0) +
𝑓′(𝑧0)

1!
(𝑧 − 𝑧0) +

𝑓′′(𝑧0)

2ǃ
(𝑧 − 𝑧0)2+.  .  . (ǀ𝑧 − 𝑧0ǀ < 𝑅0)   (1,2) 

Example:- 

     Since the function 𝑓(𝑧) = 𝑒ᶻ is entire it has a maclaurin series 

representation which is valid for all z . Her 𝑓ⁿ(𝑧)  =  𝑒𝑋  and because 

𝑓ⁿ(0) = 1 , it follows that     

    

 𝑒𝑋 =  ∑  

∞

𝑛=0

(
𝑧ⁿ

𝘯ǃ
)        (|𝑧| < ∞)                                                 .  .  .  (1,3) 

  

Not  that  if   𝑧 =  𝑥 + 𝑖0, expansion because  

𝑒ˣ = ∑  

∞

𝑛=0

(
𝑥ⁿ

𝘯ǃ
)    (−∞ < 𝑥 < ∞)  

The entire  function 𝑧²𝑒³ᶻ also has amaclaurin series expansion. The 

simplest way to obtain it is replace 𝑧 by 3𝑧 on each side of 

equation(2)and then multiply through the resulting  by 𝑧² 



𝑧2𝑒3ᶻ = ∑  

∞

𝑛=0

(
3ⁿ

𝑛ǃ
 𝑧ⁿ+2)    (−∞ < 𝑥 < ∞) 

Finally ,if we replace n by n-2 here have  

   

𝑧2𝑒3ᶻ = ∑  ∞
𝑛=2 (

3𝑛−2

𝑛(𝑛−2)ǃ
 𝑧𝑛)    (ǀ𝑧ǀ < ∞) …  

Find the Taylor series around 𝒛 = 𝟎    𝒇(𝒁) =
𝟏

𝟏−𝒛
 ?  

Sol:    

  𝑓(𝑍) =
1

1−𝑧
   → 𝑓(𝑍) =

1

1−0
=1 

𝑓′(𝑧0) =
1

(1 − 𝑧)2
→ 𝑓′(0) = 1 

𝑓′′(𝑧0) =
−2

(1 − 𝑧)3
→ 𝑓′′(0) = −2 

𝑓′′′(𝑧0) =
6

(1 − 𝑧)4
→ 𝑓′′′(0) = 6 

𝑓ⁿ(𝑧0) =
𝑛!

(1 − 𝑧)𝑛+1
→ 𝑓ⁿ(0) =

𝑛!

(1 − 0)𝑛+1
= 𝑛! 

𝑎𝑛 =
𝑓ⁿ(𝑧0)

𝑛!
=

𝑛!

𝑛!
= 1 

𝑓(𝑍) =
1

1 − 𝑧
  = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 →  𝑓(0)

∞

𝑛=0

= ∑ 𝑧𝑛

∞

𝑛=0

 

 

 

 

Remark: Taylor series around some function  

𝑓(𝑧) = 𝑒𝑧 = 1 + 𝑧 +
𝑧2

2
+

𝑧3

3
+ ⋯ = ∑

𝑧𝑛

𝑛!

∞

𝑛=0

 

𝑓(𝑧) =
1

1 − 𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ = ∑ 𝑧𝑛 

∞

𝑛=0

 

𝑓(𝑧) =
1

1 + 𝑧
= 1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ = ∑(−1)𝑛𝑧𝑛 

∞

𝑛=0

 



𝑓(𝑧) = sin 𝑧 = 𝑧 −
𝑧3

3!
+

𝑧5

5!
−.  .  . =  ∑

(−1)𝑛𝑧2𝑛+1

2𝑛 + 1
 

∞

𝑛=0

 

𝑓(𝑧) = cos 𝑧 = 1 −
z4

4!
−

𝑧6

6!
+ ⋯ = ∑

(−1)𝑛𝑧2𝑛

2𝑛
 

∞

𝑛=0

 

 

(Laurent  series) 

Definition (Laurent series)  

Laurent series of a complex function 𝑓(𝑧) is a representation of that 

function as power series which  includes of positive and negative degree. 

 (Remark) 

       It  may be used to express complex functions in 

cases where  a Taylor series expansion cannot be 

applied.  

 ( Laurent Theorem )  

         Suppose that a function 𝑓is analytic  throughout an  annular domain     

R1<ǀz-z0ǀ<R2   ,centered at z0  ,and let C denote any  positively oriented 

simple closed contour a round z0 has the series representation ;  

𝐹(𝑧) = ∑ 𝑎1(𝑧 − 𝑧0)ⁿ

∞

𝑛=0

   + ∑
𝑏𝑛

(𝑧 − 𝑧0)ⁿ
 

∞

𝑛=0

  (𝑅1 < ǀ𝑧 − 𝑧0ǀ < 𝑅2)  .   .  . (1,4) 

 

 𝑎𝑛 =
1

2𝜋𝑖
 ∫

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑧0)𝑛+1
𝑐

   .   .  .   𝑛 = (0,1,2, … )             

𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑧0)−𝑛+1
    .   .  .   𝑛 = (0,1,2, … )   

𝑐

 

singular point : 

Definition (singular point) 

A point 𝑧0 is ,called singular point of a function 𝑓(𝑧)  𝑖𝑓𝑓  F is not 

analytic  at 𝑧0but is analytic same point in every  neighborhood of 𝑧0. 

 (Isolated singular point)  



 The point 𝑧0 is an isolated singular point  of 𝑓(𝑧)if 𝑓(𝑧) is not analytic 

at 𝑧0  but analytic in a deleted  neighborhood . 

Example:-  

The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑧+1

𝑧2(𝑧2+1)
   has the three isolated singular points z=0 and 

𝑧 = ±𝑖 

Example:-the function 𝑓(𝑧) =
1

𝑧
 has a singular point at 𝑧0 = 0 

Example:-the function 𝑓(𝑧) = log 𝑧 has not  isolated singular point  

 

Definition (pole of order n)         

  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  whose Laurent expansion  about singular point 𝑧0  has a 

principal  part in which the most  negative  power of (𝑧 − 𝑧0) is – 𝑛 ,is 

said to have a pole  of order n at 𝑧0 . 

 

 

  Example  :-  

The  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑧) =
1

𝑧(𝑧−1)2
 has singular point  at 𝑧0 and 𝑧 = 1 the 

Laurent expansion  about these point is ; 

 

  𝑓(𝑧) = 𝑧¯
1

+ 2 + 3𝑧 + 4𝑧² + ⋯    0 < |𝑧| < 1  and  

  𝑓(𝑧) = (𝑧 − 1)2 − (𝑧 − 1)¯
1

− (𝑧 − 1) + (𝑧 − 1)2 + ⋯   0 < |𝑧 − 1| < 1  

The first series reveals that 𝑓(𝑧) has a pole of order 1at 𝑧 = 0,while the 

second shows a pole of order 2 at  𝑧 = 1 

 

  Definition(essential singularity)   

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  whose Laurent expansion  about   isolated  singular  point  𝑧0   

contains  an  infinite  number of  non  zero terms in the principle  part, is  

said to have  an  isolated essential  singular at. 𝑧0 

Example:- 𝑓(𝑍) = 𝑒
1
𝑧 



𝑒
1
𝑧 = ∑

(1
𝑧
)ⁿ

𝑛!

∞

𝑛=0

 

= 1 +
1

𝑧
+

1

2! 𝑧2
+

1

3! 𝑧3
+ ⋯  

 𝑧0 = 0 is called essential singular point 

    

 

Definition( a removable singular  point) 

  The point  𝑧0   is removable singular point of the  function 𝑓(𝑧)  if the 

principle part is zero in Laurent series expansion of a function 𝑓(𝑧)then 

𝑧 = 𝑧0 is called removable singular point . 

 

Example:-The  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑧) =
𝑒𝑧−1

1
 

=
1

𝑧
(𝑒𝑧 − 1)    

=
1

𝑧
(∑

𝑧𝑛

𝑛!

∞

𝑛=0

) 

=
1

𝑧
[1 +

𝑧

1!
+

𝑧2

2!
+.  .  . −1] 

= [1 +
𝑧

2!
+

𝑧2

3!
+.  .  . ] 

∴z=0 removal  singularity   

 

definition:-(Residue) 

   Let  𝑓(𝑧) analytic on a simple closed contour c  and all point interior to  

c except for the point 𝑧0 .then the residue of f(z) at 𝑧0.written 

Res[f(z), 𝑧0], is defined  by: 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧0] =
1

2𝜋𝑖
∫ 𝑓(𝑧)𝑑𝑧 … . (2,1)

 

𝑐

 



Methods of finding Residue: 

  1- Laurent series if it is easy to write down the Laurent residue is just 

the coefficient 𝑎 − 1 of the term 1/(𝑧 − 1)  

Note: here ,be sure you have the expansion about 𝑧 = 𝑎 ; the series you 

have memorized for 𝑒𝑧, since etc, 

Are expansion about z= 0 and so can be used only for finding residue at 

the    origin. 

Example  

𝑒𝑧 = 1 + 𝑧 +
𝑧2

2!
+

𝑧3

3!
+ ⋯  

In analytic at z=0 ; the residue of 𝑒𝑧 at z=0 is 0 

Example :-  

𝑒𝑧

𝑧3
=

1

𝑧3 {1 + 𝑧 +
𝑧2

2!
+

𝑧3

3!
+ ⋯ }  

    =
1

𝑧3
+

1

𝑧2
+

1

2! 𝑧
+

1

3!
+ ⋯ 

Has a pole of order 3 at z=0 ; the residue of 
𝑒𝑧

𝑧3
 at z=0 is 

1

2!
   

2-Residue at simple pole : 

  a. If 𝑓(𝑧) has simple pole at 𝑧 = 𝑎 , then the residue of 𝑓(𝑧) at 𝑧 = 𝑎 is 

𝑅𝑒𝑠 𝑓(𝑎) ≡ lim
𝑧→𝑎

(𝑧 − 𝑎)𝑓(𝑧) 

Example:- find R(0)for 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧
: 

Res
𝑧=0

𝑓(𝑧) = lim
𝑧→𝑎

(𝑧 − 0)
𝑐𝑜𝑠𝑧

𝑧
= lim

𝑧→𝑎
𝑐𝑜𝑠𝑧 = 1 

b- Residue a pole of order 𝑛 

    If 𝑓(𝑧) has a pole of order 𝑛 at 𝑧 = 𝑎  , then                                       

                          Res𝑧=𝑎 𝑓(𝑧) = lim𝑧→𝑎
1

𝑛−1
{

𝑑𝑛−1

𝑑𝑧𝑛−1
[(𝑧 − 𝑎)ⁿ𝑓(𝑧)]} 

Example:-  find the residue of 𝑓(𝑧) =
𝑧𝑠𝑖𝑛𝑧

(𝑧−𝜋)3
 𝑎𝑡 𝑧 = 𝜋 



Res
𝑧=𝜋

𝑓(𝑧) = lim
𝑧→𝜋

1

2!
{

𝑑2

𝑑𝑧2
[(𝑧 − 𝜋)3.

𝑧𝑠𝑖𝑛𝑧

(𝑧 − 1)3
]} 

      = lim
𝑧→𝜋 

1

2!
.

𝑑2

𝑑𝑧2
(𝑧𝑠𝑖𝑛𝑧) 

                            

= lim
𝑧→𝜋

=
1

2!
.

𝑑

𝑑𝑧
{𝑧𝑐𝑜𝑠𝑧

+ 𝑠𝑖𝑛𝑧} 

                           = lim
𝑧→𝜋

1

2!
{𝑧(− sin 𝑧)

   =
1

2
{−𝜋𝑠𝑖𝑛𝜋 + 2𝑐𝑜𝑠𝜋} =

1

2
{−𝜋. 0 + 2. (−1)} = −1 

 3-     If f(z) is of the form f(z)=
𝑔(𝑧)

ℎ(𝑧)
  𝑤ℎ𝑒𝑟𝑒 ℎ(𝑎) = 0 𝑏𝑢𝑡 𝑔(𝑎) ≠

0 𝑡ℎ𝑒𝑛  

𝑅𝑒𝑠(𝑧 = 𝑎) = 𝑅(𝑎) = 𝑔(𝑎)\ℎ`(𝑎)   ( ℎ`(𝑎) ≠ 0)  

 

4-    Residue at a pole  𝑍 = 𝑎 of any order (simple  or  of  order n) 

Res
𝑧=0

𝑓(𝑧) = 𝑅(𝑎) = 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 
1

𝑡
 

Rule : put 𝑧 = 0 at in the function 𝑓(𝑧), expand it in powers of  

t. coefficient of  
1

𝑡
  is the residue of f(z) at 𝑧 = 𝑎 . 

Example :-find the residue of 
𝑧3

(𝑧−1)4(𝑧−2)1(𝑧−3)1
 at z=1 here z=1 is a 

pole of order 4?  

Putting  𝑧 = 1 + 𝑡  or  𝑡 = 𝑧 − 1  ,then 𝑓(𝑧) becomes:  

F(1+t)=
(1+𝑡)3

𝑡4(𝑡−1)(𝑡−2)
=

1

𝑡4

𝑡33𝑡23𝑡1+1

−(1−𝑡).(−2𝑥1−
𝑡

2
)
 

=
𝟏

𝒕𝟒
(t3 + 3𝑡2 + 3𝑡 + 1).

1

2
(1 − 𝑡)−1(1 −

𝑡

2
)−1 

=
1

2
(

1

t
+

3

t2
+

3

t3
+

3

t4
) ∗ (1 + t + t2 + t3 + ⋯ ) ∗ (1 +

t

2
+

t2

4
+

t3

3
+ ⋯ ) 

=
1

2
(

1

𝑡
+

3

𝑡2 +
3

𝑡3 +
3

𝑡4) ∗ (1 +
3

2
𝑡 +

7

4
𝑡2+

15

8
𝑡3) ∗ (1 +

𝑡

2
+

t2

4
+

t3

8
+ ⋯ ) 



=
8+36+42+15

16𝑡
 

=
101

16𝑡
 

∴ 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 
1

2
=

101

16
, 𝑖. 𝑒. 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 =

101

16
 

5-Residue at infinity :- 

   In general ,the residue at infinity is given by : 

𝑅𝑒𝑠(𝑓(𝑧), ∞) = −𝑅𝑒𝑠 (
1

𝑧2
𝑓 (

1

𝑧
) , 0) ,If the following condition is met 

lim|𝑧|⟶∞ 𝑓(𝑧) = 0 ,then the residue at infinity can be computed using the 

following  formula 𝑅𝑒𝑠(𝑓, ∞) = − lim|𝑧|⟶∞ 𝑧. 𝑓(𝑧) ,  If instead 

lim|𝑧|→∞ 𝑓(𝑧) = 𝑐 ≠ 0 ,then the Residue at infinity is 𝑅𝑒𝑠(𝑓, ∞) =

− lim|𝑧|→∞ 𝑧2. 𝑓`(𝑧)    

Example :-    

 𝑓(𝑧) = ∮
𝑒𝑧

𝑧5
𝑑𝑧 

     = ∮
1

𝑧5
(1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
+ ⋯ 𝑑𝑧  

= ∮(
1

𝑧5
+

𝑧

𝑧5
+

𝑧2

2! 𝑧5
+

𝑧3

3! 𝑧5
+ ⋯ )  

= ∮
1

𝑧5
+

1

𝑧4
+

1

2! 𝑧3
+

1

3! 𝑧2
+ ⋯  

Since the series converges uniformly on the support of the integration 

path we are allowed to exchange integration and summation the series of 

the path integrals then collapses a much simple 

   ∮
1

𝑧𝑛
𝑐

𝑑𝑧 = 0 

𝑛 ∈ 𝑧 𝑓𝑜𝑟 𝑛 ≠ 1, ∮
1

𝑧𝑛
 

∮
1

4! 𝑧
𝑑𝑧 =

1

4!
∮

1

𝑧
𝑑𝑧 =

1

4!
(2𝜋𝑖) =

𝜋𝑖

12
 

The value 
1

4!
 is the residue of   

𝑒𝑧

𝑧5
 𝑎𝑡 𝑧 = 0 

  (Residue theorem ) 

    Let f be analytic function on and inside the simple closed contour 

expect finite number of singular points  



𝑧1, 𝑧2, … , 𝑖𝑛𝑠𝑖𝑑𝑒 𝑐 𝑖𝑓: 

𝑏1=Res(f,𝑧1) ,  𝑏2=Res(f,𝑧2),…,𝑏𝑛=(f,𝑧3) 

There=2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑓)𝑛
𝑘=1  

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑏1+𝑏2+…+𝑏𝑛) 

Proof: 

       Let  𝑆 = 𝐶 ∪ −𝐶1 ∪ −𝐶2 ∪, … ,∪ −𝐶𝑛 

        By Cauchy contour theorem  

                 0=∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 
 

𝑐∪−𝑐1∪− …∪−𝑐𝑛

 

𝑠
 

                0= ∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓1
  

−𝑐1

  

𝑐
(𝑧)𝑑𝑧        .  .   . + ∫ 𝑓(𝑧)𝑑𝑧 

   

−𝑐𝑛
 

            0 = ∫ 𝑓(𝑧)𝑑𝑧 − ∫ 𝑓1
  

𝑐1

  

𝑐
(𝑧)𝑑𝑧   .  .  .  − ∫ 𝑓(𝑧)𝑑𝑧 

   

𝑐𝑛
   

             ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓1
  

𝑐2

  

𝑐1
(𝑧)𝑑𝑧

  

𝑐
+ ⋯ + ∫ 𝑓(𝑧)𝑑𝑧 

   

𝑐𝑛
   

                               = 2𝜋𝑖 𝑅𝑒𝑠(𝑓, 𝑧1) + 2𝜋𝑖 𝑅𝑒𝑠(𝑓, 𝑧2) + ⋯ +

2𝜋𝑖 𝑅𝑒𝑠(𝑓, 𝑧𝑛) 

                               =2𝜋𝑖 𝑏1 + 2𝜋𝑖 𝑏2 + ⋯ + 2𝜋𝑖 𝑏𝑛 

                              =2𝜋𝑖 (∑ 𝑏𝑗𝑛
𝑖=1 )   

theorem(generalize residue theorem) 

Suppose  that function f(z) is analytic in a closed region D bounded by 

the closed path C, except for a finite number of singular 

points,𝑧1, 𝑧2, … , 𝑧𝑛 ,lying inside D and a finite  number of simple poles , 

𝑧1, 𝑧2, … , 𝑧𝑛, lying an C at point where C is smooth then: 

𝑝. 𝑣. ∫ 𝑓(𝑧)𝑑𝑧 =
 

𝑐

2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑓(𝑧) + 𝜋𝑖
𝑛

𝑘=1 𝑧=𝑧𝑘
 ∑ 𝑅𝑒𝑠𝑓(𝑧)

1

𝑘=1 𝑧=𝑧𝑛
 

Proof: 

We  bypass  each  singular  𝑧𝑘 by a circular  are 𝑦𝑘of radius 𝒮  and center 

at 𝑧𝑘,lying in D .we choose 𝒮  .so small that the whole are 𝑦𝑘lies in the 

region of analytic of  f(z) .then f(z) is analytic on the closed path which 

consists of the arc 𝛾𝑘 and the remaining part ,𝑐̃ of c therefore by the 

residue  theorem : 



∫ 𝑓(𝑧)𝑑𝑧
 

𝑐

+ ∑ ∫ 𝑓(𝑧)𝑑𝑧
 

𝛾𝑘

𝑛

𝑘=1
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑓(𝑧)

1

𝑘=1 𝑧=𝑧𝑘
 

Expanding f(z) in a Laurent series in a neighborhood of the simple pole 

𝑧𝑘 we obtain : 

𝐹(𝑧) =
𝑐 − 1

𝑧 − 𝑧𝑘
dz + ∑ cn(zn − z̃k)ⁿ

∞

n
 

Then: 

∫ 𝑓(𝑧)𝑑𝑧
 

𝛾𝑘

= ∫
𝑐 − 1

𝑧 − z̃k

 

𝛾𝑘

𝑑𝑧 + ∑ 𝑐𝑛(𝑧𝑛 − 𝑐̃𝑘)ⁿ
∞

𝑛=0
𝑑𝑧 

On the arc 𝛾𝑘  we have 𝑧 = 𝑧̃𝑘 + 𝑠𝑒𝑖𝑜 , ∝𝑘≤ 0 ≤ 𝐵𝑘 , 𝑤ℎ𝑒𝑟𝑒 ∝𝑘 

Is the angle between the secant joining the point 𝐴𝑘 and 𝑧̃𝑘 and the 

tangent to 𝑐̃  at  𝑧̃𝑘  and 𝐵𝑘  and 𝑧̃𝑘 and the same tangent (see the 

magnification of arc 𝛾𝑘 in fig become . 

∫ 𝑓(𝑧)𝑑𝑧
 

𝛾𝑘

= 𝑐 − 1 ∫
𝑠𝑒𝑖𝑜𝑖𝑑𝜃

𝑠𝑒𝑖𝑜
+ ∑ 𝑐𝑛 ∫ (𝑠𝑒𝑖𝑜)

𝐵𝑘

∝𝑘

∞

𝑛=1

𝐵𝑘

∝𝑘

ⁿ𝑠𝑒𝑖𝑜𝑖𝑑𝜃 

In the limit , as 𝑠 → 0 ,we have ∝𝑘→ 𝜋 , 𝐵𝑘 → 0 , 𝑏𝑒𝑐𝑜𝑚𝑒: 

lim
𝑠→0

∫ 𝑓(𝑧)𝑑𝑧
 

𝛾𝑘

= 𝑖𝑐 − 1 ∫ 𝑑𝜃

𝑜

𝜋

 

= −𝜋𝑖𝑐 − 1 

= −𝜋 𝑅𝑒𝑠𝑧=𝑧 𝑘𝑓(𝑧) 

Chance ,taking the limit as 𝛿𝑛 → 0 we obtain In the case the points  𝑧̃𝑘 

are pales of any odd order (𝑧̃𝑘)and the principal part of the Laurent 

series contains only odd power of 𝑧 − 𝑧̃𝑘                                                                            

𝑓(𝑧) = ∑
𝑐−(2𝑝+1)

(𝑧−𝑧𝑘)2𝑝+1
𝛿
𝑝=0 + ∑ 𝑐𝑛(𝑧 − 𝑧̃𝑘)ⁿ∞

𝑛=0 , 𝑤ℎ𝑒𝑟𝑒 𝑐 − (2𝑝 + 1)≠ 0 

Ended, integrating each of the terms in the principal along the arc 𝑦𝑘 

from 𝜃 = 𝜋 𝑡𝑜 𝜃 = 0 we obtain, as in the transition, that the term 

containing c-1 is the only nonzero from this term is: 

∫
𝑑𝑧

(𝑧 − 𝑧̃𝑘)2𝑝+1
=

 

𝛾𝑘

∫
𝑒𝑖𝑜𝑖𝑑𝜃

(𝑒𝑖𝑜)2𝑝+1
= 𝑖

𝑜

𝜋

∫ 𝑒−2𝑝𝑖𝜃𝑑𝜃

𝑜

𝜋

 



= ∫
𝑖𝑓 𝑝 = 0

𝑖𝑓𝑝 = 1,2, … , 𝛿

−𝜋𝑖

0

 

Note the simple pole of the integrands located on the path accrue in 

diffraction problems 

Example: Evaluate the following integral counterclockwise : 

𝐼6 = 𝑝. 𝑣. ∫
𝑠𝑖𝑛𝑧

(𝑧2 − 1)(𝑧2 + 1)
𝑑𝑧

 

121=1

 

Solution :-    

 the four singular points, 𝑧 = ±1 and 𝑧 = ±𝑖, of the integrand are 

simple poles. Moreover, all the singularities are located on the circle 
|𝑧| = 1 

𝐼6 = 𝜋𝑖(𝑅𝑒𝑠𝑧=1 + 𝑅𝑒𝑠𝑧=−1 + 𝑅𝑒𝑠𝑧=𝑖 + 𝑅𝑒𝑠𝑧=−𝑖) [
𝑠𝑖𝑛𝑧

(𝑧2 − 1)(𝑧2 + 1)
] 

𝜋𝑖 [
𝑠𝑖𝑛𝑧

2𝑧(𝑧2+1)
] 𝑧 = 𝑖 +

𝑠𝑖𝑛𝑧

2𝑧(𝑧2−1)
[𝑧=−𝑖] 

= 𝜋𝑖 [
𝑠𝑖𝑛1

4
+

𝑠𝑖𝑛1

4
+

𝑠𝑖𝑛1

2𝑖(−2)
+

sin (−1)

2(−𝑖)(−2)
] 

=
𝜋𝑖

2
(𝑠𝑖𝑛1 − sin ℎ𝑖) 

 

 

 

 

 


